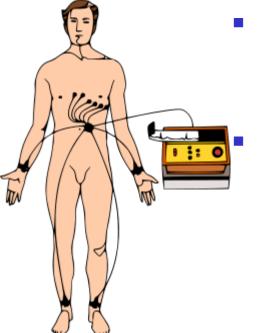
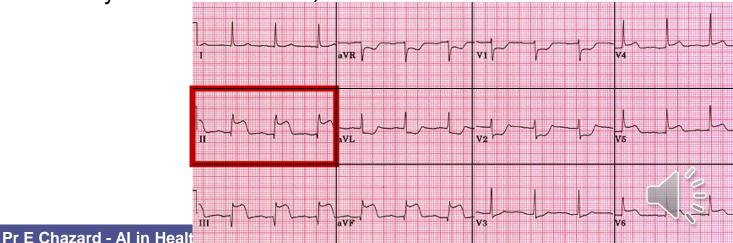
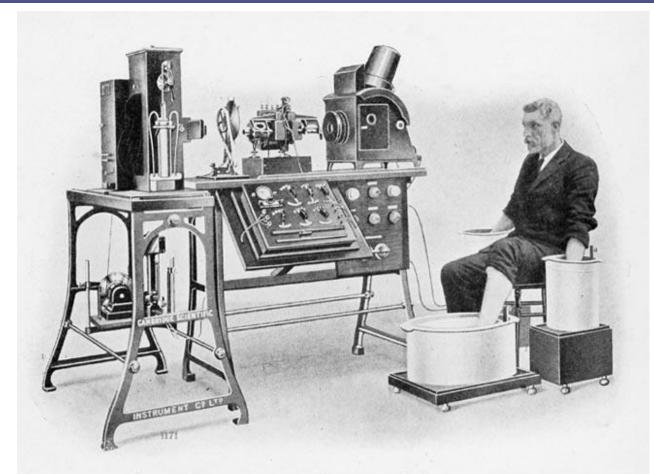
Example 4: Automated interpretation of electrocardiograms



Electrocardiography for dummies

2020-04-17


Introduction to electrocardiography


- Definition
 - Recording of the electrical activity of the heart
 - Non-invasive exam: usually 10 probes pasted on the skin
 - Routinely used, not expensive

Outcome:

- 12 charts of the electric signal of the heart (12 points of view) during a few seconds
- Complex analysis: cardiologists, few GPs only
- Immediate diagnosis of some heart diseases (e.g. atrial fibrillation), sometimes with localization (e.g. "acute lateral myocardial infarction")

Willem Einthoven, Leiden, string galvanometer, 1901. Nobel, 1924.

An early commercial ECG device (1911)

Photograph of a Complete Electrocardiograph, Showing the Manner in which the Electroces are Attached to the Patient, In this Case the Hands and One Foot Being Immersed in Jars of Salt Solution

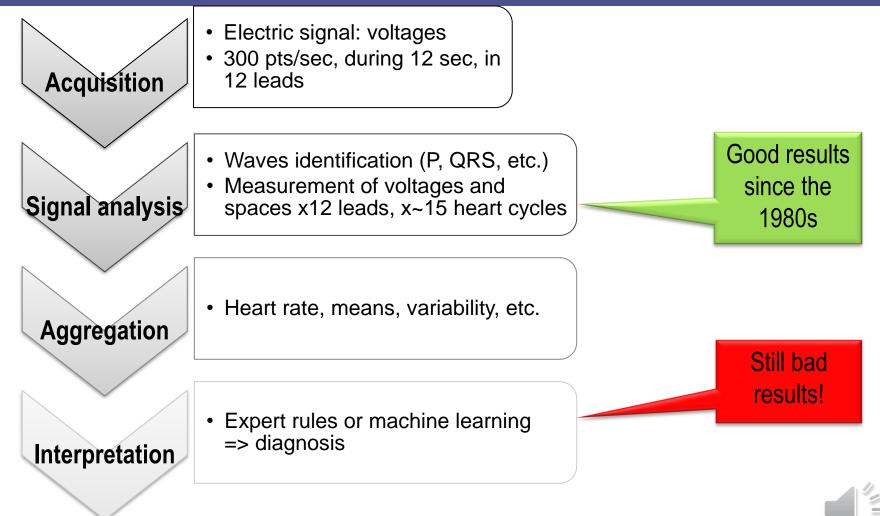
2020-04-17

Electrocardiographic data


	C	trace_ecg.xlsx - Microsoft Excel _ □									_ = X		
		Accueil	Insertion I	Mise en pag	e	Formules	Données	R	évision	Affichage	Compléments	0 -	⊐ x
xml version='1.0' encodin</td <td></td> <td>- x</td> <td>Calibri - 1</td> <td>1 -</td> <td></td> <td></td> <td>Standard</td> <td>Ţ</td> <td>A -</td> <td>Insérer 🔻</td> <td>Σ - Α</td> <td>44</td> <td></td>		- x	Calibri - 1	1 -			Standard	Ţ	A -	Insérer 🔻	Σ - Α	44	
<contenu examen=""></contenu>			GIST					000		Supprimer -	🔁 - Ží	ŭrŭ 👘	
<pre><echantillonnage>300 par</echantillonnage></pre>	Co	oller 🧹	🖽 - 🔕 - A				,00, 0,00, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,		Style	Format *	Trier et 🛛	lechercher et électionner *	
<pre><sensibilite>5 microvolts</sensibilite></pre>	Presse	e-papiers 🕞	Police			nement 💿	Nombre	Fa		Cellules	Éditi		
<pre><enregistrement></enregistrement></pre>		F3	• (0	f_{x}									×
<numero>1</numero>		А	В	С		D	E		F	G	Н		
<date>10/01/2012 13:38:</date>	4												
<pre><vitesse>25 mm par secc</vitesse></pre>	5 t	emps (sec)	valeur (mV)										
	6	0.003	13	100	7 ⊤						I		
<pre><frequence_cardiaque>70</frequence_cardiaque></pre>		0.007	10							1			
<filtre60hz>NAO<td></td><td>0.010</td><td>6</td><td>60</td><td>) </td><td></td><td></td><td>+-</td><td></td><td></td><td></td><td></td><td></td></filtre60hz>		0.010	6	60) 			+-					
<derivations></derivations>	9	0.013	1										
<canal id="DI"><valeu< td=""><td></td><td>0.017</td><td>-5</td><td>20</td><td>• +</td><td>HA .</td><td></td><td>₼</td><td></td><td></td><td></td><td></td><td></td></valeu<></canal>		0.017	-5	20	• +	HA .		₼					
<canal id="DII"><vale< td=""><td>11</td><td>0.020</td><td>-4</td><td></td><td>1.</td><td>h lir hand l</td><td>/ \</td><td>/\\</td><td>M(1/\/</td><td>السيا موال</td><td>MAN W</td><td></td><td></td></vale<></canal>	11	0.020	-4		1.	h lir hand l	/ \	/\\	M(1/\/	السيا موال	MAN W		
<canal id="DIII"><val< td=""><td>_</td><td>0.023</td><td>-9</td><td>-20</td><td>, <u>M</u></td><td>V TW</td><td>(<u> </u></td><td></td><td>· • •</td><td>W W</td><td>I VIV</td><td>TVFW</td><td>-</td></val<></canal>	_	0.023	-9	-20	, <u>M</u>	V TW	(<u> </u>		· • •	W W	I VIV	TVFW	-
<canal id="AVR"><vale< td=""><td></td><td>0.030</td><td>-11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vale<></canal>		0.030	-11										
<canal id="AVL"><vale< td=""><td></td><td>0.033</td><td>-13</td><td>-60</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vale<></canal>		0.033	-13	-60									
<pre><canal id="AVF"><vale< pre=""></vale<></canal></pre>	20	0.037	-15		Έ								
	17	0.040	-17							I			
<canal id="V1"><valeu< td=""><td>18</td><td>0.043</td><td>-16</td><td>-100</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>+I I +</td><td></td><td></td></valeu<></canal>	18	0.043	-16	-100			•				+ I I +		
<canal id="V2"><valeu< td=""><td>19</td><td>0.047</td><td>-13</td><td></td><td>0.00</td><td>0 1.0</td><td>00 2</td><td>.000</td><td>3.00</td><td>JU 4.</td><td>000 5.0</td><td>00 6.0</td><td>000</td></valeu<></canal>	19	0.047	-13		0.00	0 1.0	00 2	.000	3.00	JU 4.	000 5.0	00 6.0	000
<canal id="V3"><valeu< td=""><td>20</td><td>0.050</td><td>-13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></valeu<></canal>	20	0.050	-13										
<canal id="V4"><valeu< td=""><td></td><td>0.053</td><td>-12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></valeu<></canal>		0.053	-12										_
<canal id="V5"><valeu< td=""><td>22</td><td>0.057</td><td>-10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></valeu<></canal>	22	0.057	-10										
<canal id="V6"><valeu< td=""><td>23 24</td><td>0.060</td><td>-11</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>1</td></valeu<></canal>	23 24	0.060	-11					_					1
	24	0.063	-12										
	25	0.067	-12					_					5-
_			Feuil2 Feuil3							1			
	Prêt			_							🛛 100 % 🕞 —		-÷.:

Cardiovascular diseases and ECG

Cardiovascular disease


- 17.5 million death/year (World Health Organization ; 42% coronary heart disease, 38% stroke)
- third cause of death before 65 years
- In France, in primary care
 - Cardiovascular risk factors = 13% of visits
 - Cardiovascular diseases = 7.7% of emergency visits
- Electrocardiography (ECG): the most widely used procedure for diagnosis, notably myocardial infarction.

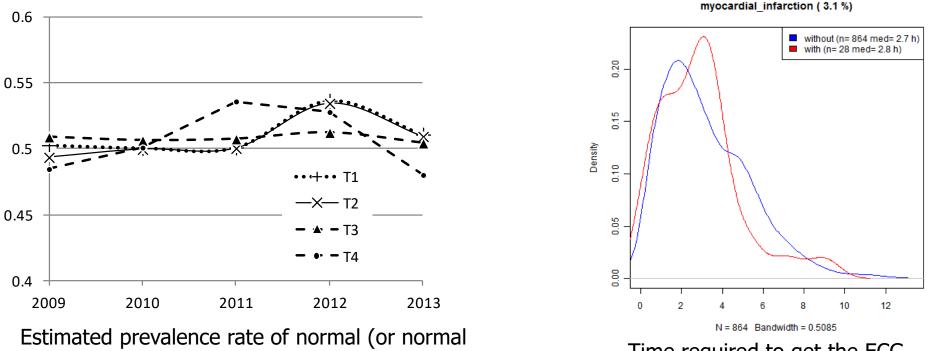
ECG computerized interpretation (ECG-CI, first attempts in 1950s)

Evaluation of an ECG computerized interpreter

2020-04-17

group	varname	kappa			
	normal variant	0.004			
Global	error nonfatal	0.098			
	permanent pacemaker	0.195			
A Morph	left ventricular hypertrophy	0.382			
	right ventricular hypertrophy	0.111			
A Isch	myocardial infarction	0.267			
_	deg1 atrio ventricular block	0.499			
B Cond	left bundle branch block	0.551			
Beond	right bundle branch block	0.706			
	wolff parkinson white	0.499			
B Repol	Repol repolarization abnormality				
	sinus rhythm	0.428			
	sinus bradycardia	0.441			
	sinus or supravent tachycardia	0.526			
	atrial fibrillation flutter	0.66			
B Rhythm	multifocal or ectopic atrial rhythm	0.31			
	prem atrial contraction or	0.27			
	supraventricular extrasyst				
	junctional rythm normal or acc	-0.002			
	ventricular extrasyst	0.401			
	tachycardia	0.56			
	bradycardia	0.441			
С	pr short	0.081			
	axis deviation	0.547			
	qt long	-0.002			

Validation study of a commercial ECG-CI


Agreement between the software and the gold standard (3 cardiologists), study of 900 records

Kappa coefficient: -Random answer: k=0 -Full agreement: k=1

Is the software reliable? NO!

May the ECG-CI be used to identify abnormal ECGs (without precise diagnosis)?

variant) ECGs, using 4 different methods.

Time required to get the ECG interpreted

Chazard E, Marcolino MS, Dumesnil C, Caron A, Palhares DM, Ficheur G, Marino BC, Alkmim MB, Beuscart R, Ribeiro AL. One Million Electrocardiograms of Primary Care Patients: A Descriptive Analysis. Stud Health Technol Inform. 2015;216:69-73.

2020-04-17

Performance of normal ECG detection

Evaluation of the identification of "normal ECGs", using 5 different methods

threshold	0.5
algo	1
Sensitivity	59.6%
Specificity	83.6%
Pos Pred Value	79.8%
Neg Pred Value	65.5%
Карра	42.7%
Harm Mean	68.2%

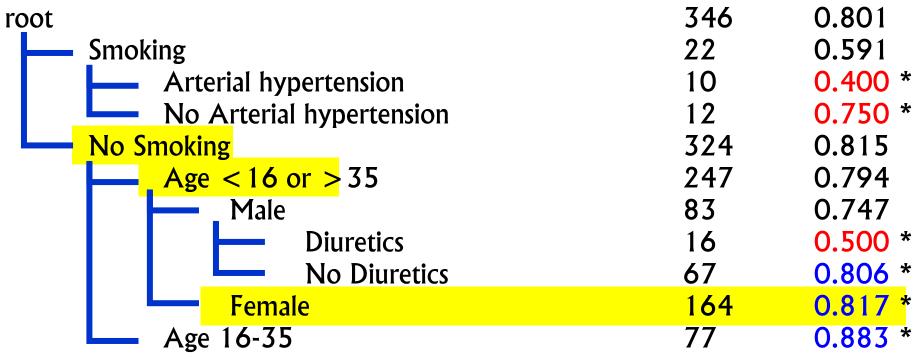
threshold	1.5
algo	1
Sensitivity	65.6%
Specificity	75.4%
Pos Pred Value	74.4%
Neg Pred Value	66.8%
Карра	40.8%
Harm Mean	69.7%

threshold	2.5
algo	1
Sensitivity	67.7%
Specificity	73.3%
Pos Pred Value	73.4%
Neg Pred Value	67.6%
Карра	40.9%
Harm Mean	70.5%

threshold	0.5
algo	10
Sensitivity	57.0%
Specificity	84.1%
Pos Pred Value	79.6%
Neg Pred Value	64.2%
Карра	40.6%
Harm Mean	66.4%

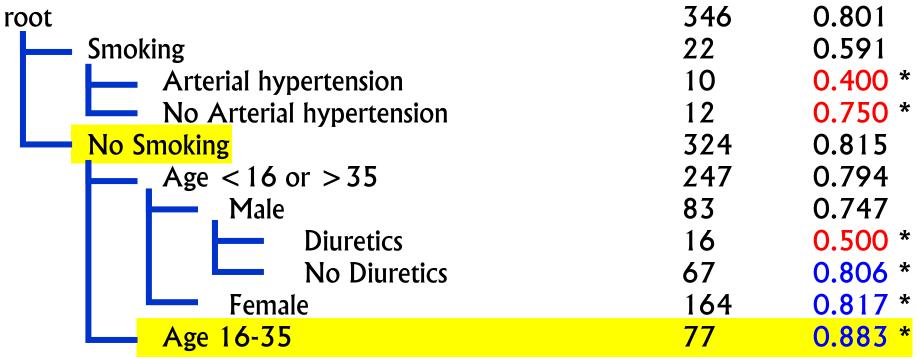
threshold	0.5
algo	11
Sensitivity	87.1%
Specificity	45.2%
Pos Pred Value	63.4%
Neg Pred Value	76.3%
Карра	32.8%
Harm Mean	73.4%

Attempt to improve the detec tion of normal ECGs, using context variables


Decision tree with context variables:

root	346	0.801
– Smoking	22	0.591
Arterial hypertension	10	0.400 *
No Arterial hypertension	12	0.750 *
No Smoking	324	0.815
Age < 16 or > 35	247	0.794
— Male	83	0.747
— Diuretics	16	0.500 *
No Diuretics	67	0.806 *
Female	164	0.817 *
Age 16-35	77	0.883 *

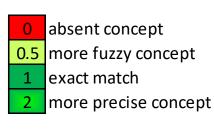
Attempt to improve the detec tion of normal ECGs, using context variables


Decision tree with context variables:

Attempt to improve the detec tion of normal ECGs, using context variables

Decision tree with context variables:

What the literature says...


2020-04-17

					/ /	/ /	/ /	/ /	/	/		/ /	/	/ /	/ /	
				15		12	/.		Nello 2012	and Sugar	10.	man 1996	6	1	1	/. /
			/	eti 2011	1001	ano 2012 Gué	n 205 Helt	AP11973	ello20	CON	12001 with	Nar 12	5751990 1751990	57151991 57151991	n ⁵¹⁹⁸¹	\$ ² 002
			BUR	ne dini	' Guli	or Gue	helf	8 30	ar prov	al sha	NIC WIT	NIII WIII	S NI	NIII	s. No	*0
		typical chest pain	1	0	0	0	0	0	0	0	0	0	0	0	0	
		atypical chest pain	1	0	0	0	0	0	0	0	0	0	0	0	0	
		breathlessness	1	0	0	0	0	0	0	0	0	0	0	0	0	
	Symptoms	epigastric pain palpitations	1	0	0	0	0	0	0	0	0	0	0	0	0	
		dizziness/syncope	1	0	0	0	0	0	0	0	0	0	0	0	0	
General data		other symptoms	1	0	0	0	0	0	0	0	0	0	0	0	0	
uata		no symptom	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Sinus rythm	0	1	0	0	0	0	1	1	0	0	0	0	0	
	Technical	Normal ECG Normal variant / isolated or non specific abnorm	0	0	1	0	0	1	1	0	0	1 0	0	0	0	
	statements	Permanent pacemaker	0	0	0	1	0	0	0	1	0	0	0	0	0	
		Various errors	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Left Atrial hypertrophy / enlargement / abnorma	0	0	1	1	0	0	0	0	0	0	0	0	2	
	Morphology	Right atrial hypertrophy / enlargement / abnorm	0	1	1	1	0	0	1	0	0	0	0	0	0	
		Left ventricular hypertrophy	0	0	1	1	0	1	1	0	0	2	0	0	1	
	Ischemia	Right ventricular hypertrophy Myocardial ischemia	0	1	1	1	0	0	1	0	0	2	0	0	0	
	Ischenna	Acute myocardial infarction	0	0	2	1	0	2	2	0	0	2	0	0	2	
Turne		Atrial infarction	0	0	1	0	0	0	0	0	0	0	0	0	0	
Type A		Anterior myocardial infarction (+/- possible)	0	0	0	0	0	1	1	0	0	1	0	0	1	
	Acute	Lateral myocardial infarction	0	0	0	0	0	0	0	0	0	0	0	0	1	
	infarction	Inferior myocardial infarction (+/- possible)	0	0	0	0	0	1	1	0	0	1	0	0	1	
		Posterior Myocardial Infarction Septal myocardial infarction	0	0	0	0	0	0	0	0	0	0	0	0	1	
		Combined myocardial infarction	0	0	2	0	0	2	2	0	0	2	0	0	2	
	Other	Old myocardial infarction, fibrosis	0	0	1	1	0	0	0	0	0	0	0	0	0	
		Premature atrial contractions / Supraventricular extrasy	0	0	1	1	0	0	0	0	0	0	0	0	0	
		Sinus bradycardia	0	0	1	0	0	0	1	0	0	0	0	0	0	
	Atrial rythm	Sinus tachycardia / Supraventricular tachycardia (+/- pr	0	0	1	0	0	0	2	0	0	0	0	0	1	
	troubles	Atrial fibrillation / flutter (+/- probable)	0	0	1	2	0	0	1	1	0	0	0	0	1	
		Sinus arrhythmia / multifocal atrial tachycardia / ectopic	0	1	1	0	0	0	2	2	0	0	0	0	0	
		Paroxysmal supraventricular tachycardia	0	0	1	0	0	0	0	0	0	0	0	0	0	
	Jct. ryth. trbl.	Junctional rhythm / Accelerated Junctional Rhythm / Ju	0	0	1	0	0	0	1	1	0	0	0	0	1	
	Ventricular	ventricular tachycardia	0	0	1	0	0	0	0	1	1	0	0	0	1	
Type B	rythm	Ventricular extrasystoles (premat. vent. contraction) / ve	0	0	1	1	0	0	0	0	0	0	0	0	0	
	Supraventric	1M atrio-ventricular block	0	0	0.5	1	0	0	0	0	0.5	0	0	0	1	
	ular	2M Atrio-ventricular block	0	0	0.5	1	0	0	0	0	0.5	0	0	0	1	
	condution	3M Atrio-ventricular block / atrioventricular dissociated	0	0	0.5	0	0	0	1	1	0.5	0	0	0	0	
	troubles	Wolff-Parkinson-White Idioventricular rhythm	0	0	1	0	0	0	0	0	0	0	0	0	0	
	Ventricular	Intraventricular conduction defect	0	0	2	0	0	2	1	0	0	0	0	0	0	
	conduction	Left bundle branch block	0	0	2	1	0	1	2	0	0	0	0	0	1	
	or	Right bundle branch block	0	0	2	1	0	1	2	0	0	0	0	0	- 1	
	repolarization	Early or abnormal repolarization (incl. Brugada syndron	0	0	1	0	0	0	0	0	0	0	0	0	0	
	Misc	Heart rate (bpm)	0	0	0	0	0	1	0	0	0	0	0	0	0	
		P amplitude	0	0	0	0	1	0	0	0	0	0	0	0	0	
	Р	P duration	0	0	0	0	1	0	1	0	0	0	0	1	0	
		P axis	0	0	0	0	1	0	0	0	0	0	0	0	0	
	PR	PR interval	0	0	1	0	0	1	0	0	0	0	0	1	0	
		QRS amplitude QRS duration	0	0	0	0	1	1	1	0	0	0	0	1	0	
	0.55	QRS axis or axis deviation	0	0	0	0	1	0	1	0	0	0	0	0	1	
Type C	QRS	Q duration	0	0	0	0	1	0	0	0	0	0	0	0	0	
		R amplitude	0	0	0	0	1	0	0	0	0	0	0	0	0	
		R duration	0	0	0	0	1	0	0	0	0	0	0	0	0	
	QT	QT interval QT Dispersion	0	1 0	0	0	1	1	1	0	0	0	0	1 0	1	
		ST Duration	0	0	0	0	0	1	0	0	0	0	0	0	0	
	CT T	ST elevation	0	0	0	0	1	0	1	0	0	0	0	0	0	
	ST, T	Tamplitude	0	0	0	0	1	0	0	0	0	0	0	0	0	
		Taxis	0	0	0	0	1	1	0	0	0	0	0	0	0	

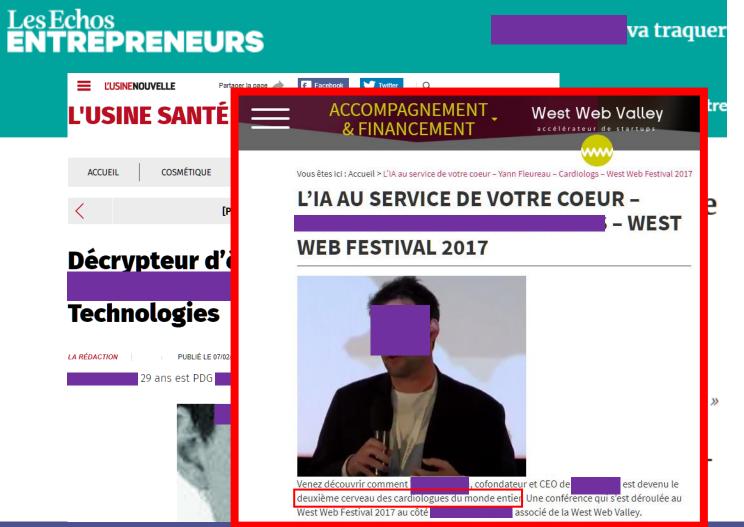
Bibliographic review

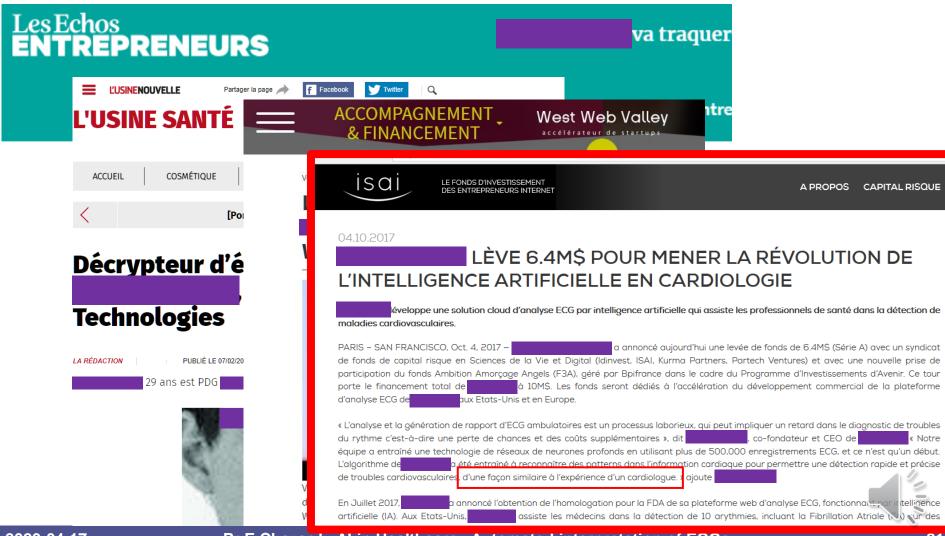
Rows: messages of the ECG-CI (e.g. "myocardial infarction")

Columns: papers published in international scientific journals, with an ECG-CI evaluation

nterpretation of ECGs

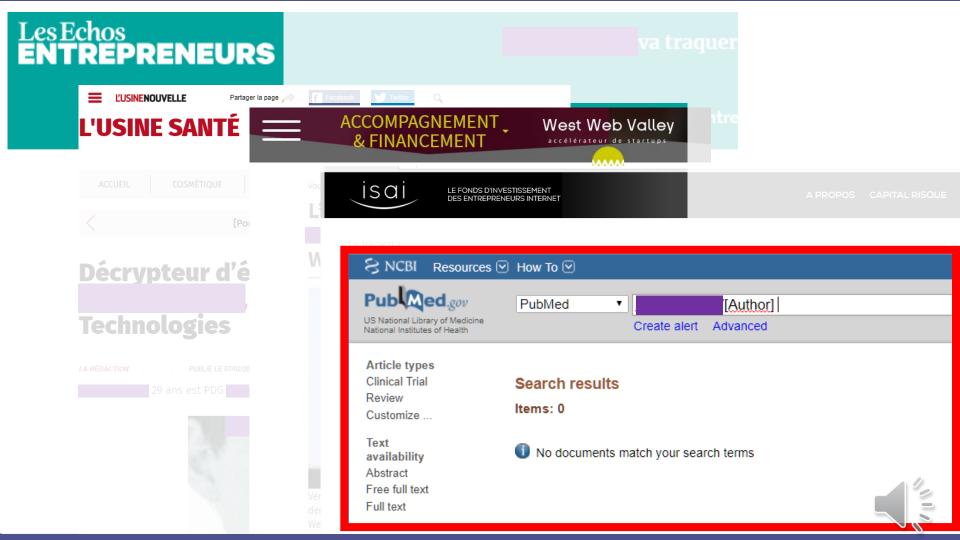
The computer vs. gold standard agreement in the literature... Salerno 2003 (review 1966-2002)


Paper	Field	Ν	Se	Sp	Agree*	Kappa
Goodacre 2001	All, emergency room	50				
Massel 2000	ECG criteria for thrombolysis	75	61.5%	100%		68%
Sekiguchi 1999	Abnormal ECG detection	1,058	87.4%	83.5%		
De Bruyne 1997	MI, BBB, VH	381	74-93%	97-99.8%		
Brailer 1997	All, selected by investigator. Cardiologists with computer, vs. GS	80			61%	
Heden 1996	Anterior MI	1,664			77%	
Heden 1996	Lead reversal detection	10,906	57-83%	99.8%		
Wildman 1996	Dysrhythmias	56			82.1%	
Woolley 1992	All, family medicine clinic	301			88%	
Shirataka 1992	Computer-generated arrhythmias	110			0-100%	
Willems 1991	Normal, AMI, VH	1,220			69.7%	
Willems 1990	AMI, VH	500			76.6%	61%
Thomson 1989	All (but publish VH, Arr, MI, ST-T, axis, conduction blocks)	5,110	83-94%	84-94%		
*Is it the	"observed concordance", with better values than	n Kappa, bu	ut not acce	ptable in sci	entific publ	lications.



2020-04-17

Les E ENT	chos REPRENEURS	va traquer
	L'USINENOUVELLE Partager la page A Facebook Vitter L'USINE SANTÉ	ir Ma vie d'entre
	ACCUEIL COSMÉTIQUE PHARMACIE / BIOTECHNOLOGIES ENTRETIEN / HYGIÈNE	ver 5,3
	[Portraits] Les start-uppers de l'IA 14 / 15	ıs sa phase
	Décrypteur d'électrocardiogrammes : PDG de Technologies	
	LA RÉDACTION PUBLIÉ LE 07/02/2018 À 13H10 29 ans est PDG	e doit pas echnologie, des e de motivation. »
		r une oduit aux États-
2020-04-	Pr E Chazard - Al in Healthcare - Automated in	nterpretation of ECGs



2020-04-17

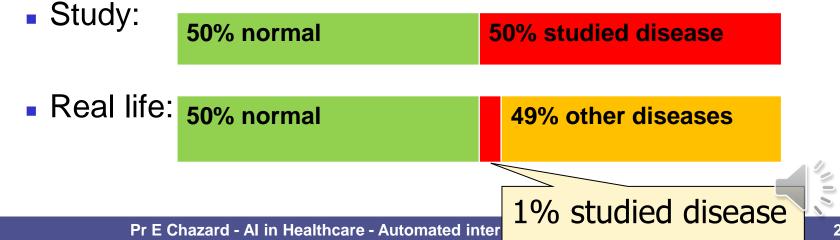
2020-04-17

2020-04-17

How can some manufacturers and researchers claim to obtain good results?

Miscellaneous reasons:

- Using computer-simulated ECGs
- Present the "observed agreement coefficient" (not honest: always good for rare diseases)
- The physicians first read the output, and say if they agree or not
- The software is evaluated by its creators
- Rarely peer-reviewed scientific papers, mostly technical reports that cannot be validated by researchers' community



How can some manufacturers and researchers claim to have good results?

Main reasons:

2020-04-17

- Compute only sensitivity and specificity
 - Not impacted by low prevalence rates
 - E.g. : Se=90%, Sp=90%, Prev=1%
 => positive predictive value=8.3%, Kappa=13.7%
- Use non representative samples:

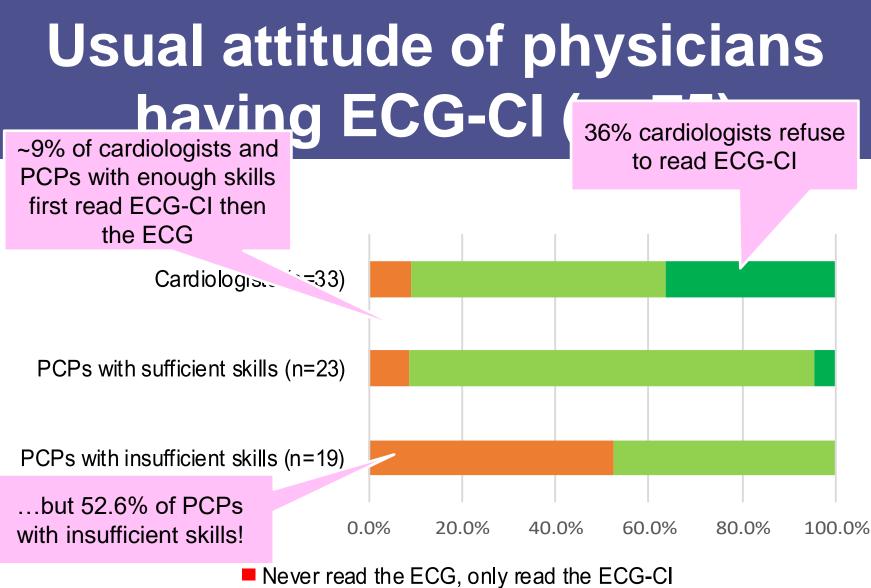
Real-life use of automated ECG interpreters

2020-04-17

Unfortunately, French GPs seem to trust such software!

225 French physicians questioned:

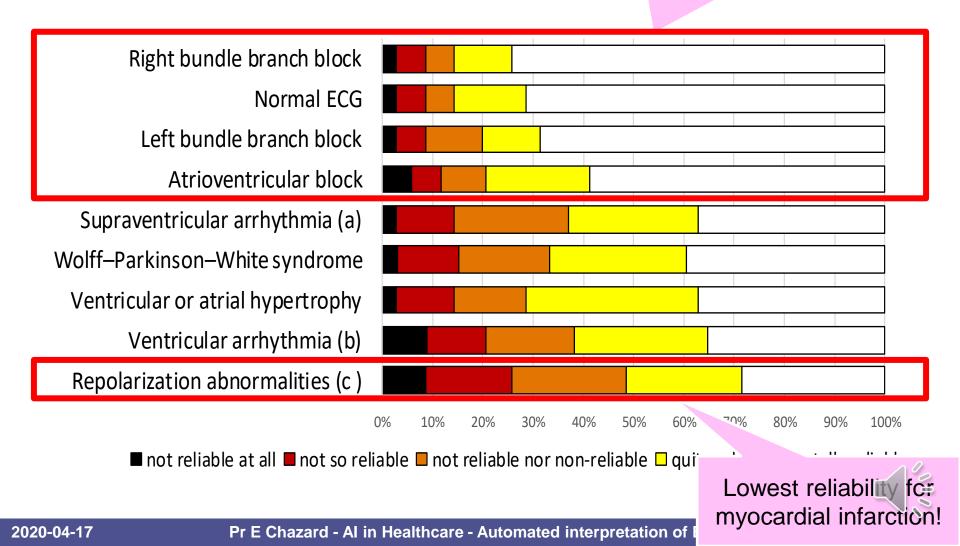
	GPs (n=154)	Cardiologists (n=71)
Self-perceived skills in ECG interpretation	36.7%	94.2%
ECG device in the office	49.4%	100%
Among them, ECG-CI	27.9%	50.7%


ECG-CI = ECG computerized interpreter

Delrot C, Bouzillé G, Calafiore M, Rochoy M, Legrand B, Ficheur G, Chazard E. Do Medical Practitioners Trust Automated Interpretation of Electrocardiograms? Stud Health Technol Inform. 2019 Aug 21;264:536-540. doi: 10.3233/SHTI190280

PCPs having alone, more likely men, working alone, in rural areas More likely working more likely working

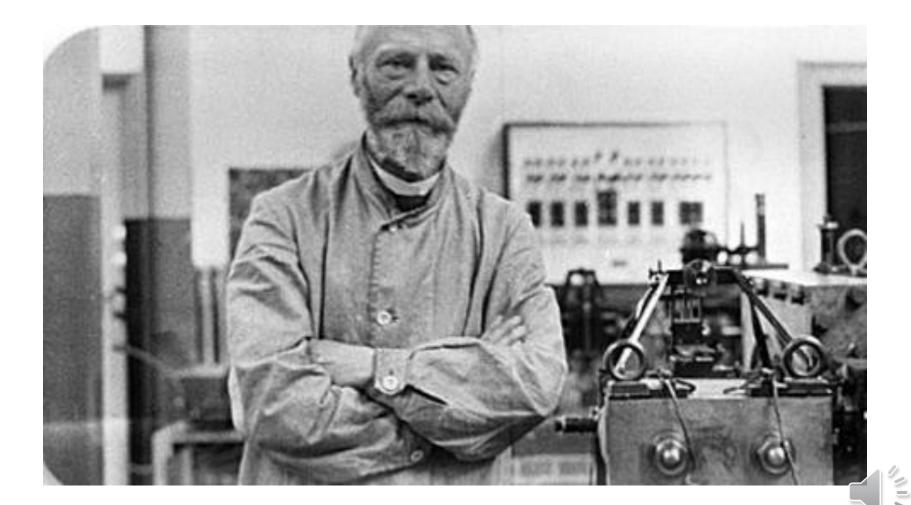
		in emergency	
further from cardiologists and ED	s with ECG (n=76)	P(thout CG (n=78)	p value
Men	56 (73.7%)	40 (51.3%)	0.005
Urban practice location	31 (40.8%)	49 (63.6%)	0.003
Group practice	35 (46.1%)	53 (68%)	0.028
Emergency specialty	9 (22%)	2 (5.4%)	0.051
On-call duty	50 (66.7%)	followed more	
Distance from the nearest emergency department	10km [3;20]	postgraduate courses	
Distance from the nearest cardiology office	6km [1;18.5]	m [1;5]،	<0.001
Training seminar for interpreting ECGs	14 (18.4%)	4 (5.3%)	0.022
Self-perceived skills in ECG interpretation	43 (57.3%)	12 (16%)	<0.001


Delrot C, Bouzillé G, Calafiore M, Rochoy M, Legrand B, Ficheur G, Chazard E. Do Medical Practitioners Trust Automated Interpretation of Electrocardiograms? Stud Health Technol Inform. 2019 Aug 21;264:536-540. doi: 10.3233/SHTI190280. think they are more able to interpret ECGs... but only 57%

- First read the ECG-CI, then read the ECG
- First read the ECG, then read the ECG-CI
- Never read the ECG-CI, only read the ECG

2020-04-17

Perceived reliability of ECG-Cl, by statement Acceptable (but non perfect) reliability for normal ECG and conduction troubles


And if remote interpretation was finally the solution?

<u>Special thanks to:</u> Maria Beatriz M. Alkmim, Antonio Luiz Ribeiro, & Milena Soriano Marcolino

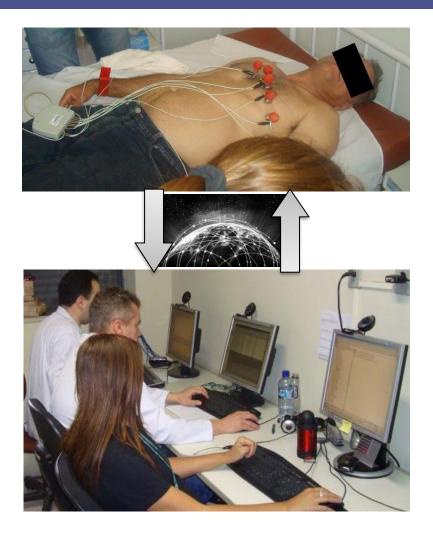
Willem Einthoven, ECG transmission via telephone lines, 1500m, 1906.

Minas Gerais: a Brazilian state with a highly concentrated population

- Brazil
 - 26 states

TAMEN

- Minas Gerais (MG)
 - 3rd richest state of brazil
 - Capital = Belo Horizonte



- 26% of the MG population!
- Good access to healthcare services
- Outside the capital
 - Mean: 25 inhabitants/km²
 - Low transport speed
 - No cardiologist

2020-04-17

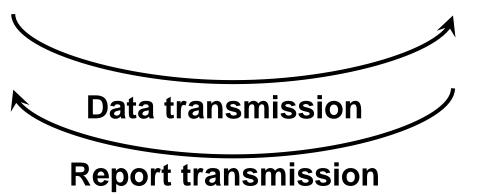
Remote ECG interpretation

- ~1000 remote healthcare centers
 - 1 general pracitionner, 2-3 nurses, etc.
 - ECG recording
- Web transmission
 - 1 unique center for interpretation. Every day:
 - 3 on duty cardiologists
 - about 1,000 ECGs are interpreted!
 - average delay: 3 hours

Remote ECG interpretation

Example of

- ~1000 remote healthcare centers
 - Low-cost equipment: PC, printer, webcam
 - ECG recorder: 10 standard probes, USB link, simple data acquisition module
 - DSL internet communication
- For mobile GPs
 - Complete suitcase
 - Cell phone for data transmission over the web


ECG: the perfect candidate for telemedicine!

Exam capture

- On the patient
- Low cost device
- Simple training: positioning the probes (nurse, GP, etc.)

Exam interpretation

- Asynchronous: no interference with the capture
- Rare skills: mainly cardiologists
- Fast interpretation

can be outsourced to a country where labour is cheaper